MC-7200 STORMTECH CHAMBER SPECIFICATIONS - CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE - CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 60x101 - CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD - THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES. - CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT SHALL BE GREATER THAN OR EQUAL TO 500 LBS/FT/%. THE ASC IS DEFINED IN SECTION 6.2.8 OF ASTM F2418. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS. - ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE - DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER. THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 - FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN - EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN. - CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY - MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECHNICAL NOTE 6.32 FOR MANIFOLD SIZING GUIDANCE. DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND COUPLE ADDITIONAL PIPE TO STANDARD MANIFOLD COMPONENTS IN THE FIELD. - ADS DOES NOT DESIGN OR PROVIDE MEMBRANE LINER SYSTEMS. TO MINIMIZE THE LEAKAGE POTENTIAL OF LINER SYSTEMS, THE MEMBRANE LINER SYSTEM SHOULD BE DESIGNED BY A KNOWLEDGEABLE GEOTEXTILE PROFESSIONAL AND INSTALLED BY A ### IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-7200 CHAMBER SYSTEM STORMTECH MC-7200 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A PRE-CONSTRUCTION MEETING WITH THE INSTALLERS. - STORMTECH MC-7200 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-7200 CONSTRUCTION GUIDE". - CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR EXCAVATOR SITUATED OVER THE CHAMBERS. STORMTECH RECOMMENDS 3 BACKFILL METHODS: STONESHOOTER LOCATED OFF THE CHAMBER BED. - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE. BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR. - THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS. - 5. JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. - MAINTAIN MINIMUM 9" (230 mm) SPACING BETWEEN THE CHAMBER ROWS. - 7. INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 12" (300 mm) INTO CHAMBER END CAPS. - EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE OR RECYCLED CONCRETE, - STONE SHALL BE BROUGHT UP EVENLY AROUND CHAMBERS SO AS NOT TO DISTORT THE CHAMBER SHAPE. STONE DEPTHS SHOULD NEVER DIFFER BY MORE THAN 12" (300 mm) BETWEEN ADJACENT CHAMBER ROWS. - 10. STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW - 11. THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIAL BEARING CAPACITIES TO THE SITE DESIGN ENGINEER. - ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF. # NOTES FOR CONSTRUCTION EQUIPMENT - STORMTECH MC-7200 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-7200 CONSTRUCTION GUIDE". THE USE OF EQUIPMENT OVER MC-7200 CHAMBERS IS LIMITED: - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS. NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE WITH THE "STORMTECH MC-7200 CONSTRUCTION GUIDE" • WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-7200 CONSTRUCTION GUIDE". - 3. FULL 36" (900 mm) OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER CONTACT STORMTECH AT 1-800-821-6710 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR # MC-7200 ISOLATOR ROW PLUS DETAIL MC-7200 ISOLATOR ROW PLUS DETAIL ## **INSPECTION & MAINTENANCE** - STEP 1) INSPECT ISOLATOR ROW PLUS FOR SEDIMENT A. INSPECTION PORTS (IF PRESENT) - A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN A.2. REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED - A.3. USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG A.4. LOWER A CAMERA INTO ISOLATOR ROW PLUS FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL) A.5. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3. B. ALL ISOLATOR PLUS ROWS - REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW PLUS USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW PLUS THROUGH OUTLET PIPE B.3. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3. - MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE - STEP 2) CLEAN OUT ISOLATOR ROW PLUS USING THE JETVAC PROCESS A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN - VACUUM STRUCTURE SUMP AS REQUIRED STEP 3) REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS. - STEP 4) INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM - 1. INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS. - 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY. ### UNDERDRAIN DETAIL STORMTECH STORMTECH : CHAMBERS STORMTECH CHAMBER END CAP OUTLET MANIFOLD FOUNDATION STONE BENEATH CHAMBERS ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE DUAL WALL PERFORATE HDPE UNDERDRAIN END CAP FOUNDATION STONE BENEATH CHAMBERS ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE NUMBER AND SIZE OF UNDERDRAINS PER SITE DESIGN ENGINEER SECTION B-B 4" (100 mm) TYP FOR SC-310 & SC-160LP SYSTEMS 6" (150 mm) TYP FOR SC-740, SC-800, DC-780, MC-3500, MC-4500 & MC-7200 SYSTEMS 12" (300 mm) MIN INSERTION FOR A PROPER FIT IN END CAP OPENING. NOTE: MANIFOLD STUB MUST BE LAID HORIZONTAL 100.0" (2540 mm) NOMINAL CHAMBER SPECIFICATIONS SIZE (W X H X INSTALLED LENGTH) 100.0" X 60.0" X 79.1" (2540 mm X 1524 mm X 2010 mm) CHAMBER STORAGE 175.9 CUBIC FEET (4.98 m³) MINIMUM INSTALLED STORAGE* 267.3 CUBIC FEET (7.56 m³) WEIGHT (NOMINAL) 205 lbs. (92.9 kg) NOMINAL END CAP SPECIFICATIONS SIZE (W X H X INSTALLED LENGTH) 90.0" X 61.0" X 32.8" (2286 mm X 1549 mm X 833 mm) END CAP STORAGE 39.5 CUBIC FEET (1.12 m³) MINIMUM INSTALLED STORAGE* 115.3 CUBIC FEET (3.26 m³) WEIGHT (NOMINAL) 90 lbs. *ASSUMES 12" (305 mm) STONE ABOVE, 9" (229 mm) STONE FOUNDATION AND BETWEEN CHAMBERS 12" (305 mm) STONE PERIMETER IN FRONT OF END CAPS AND 40% STONE POROSITY | PARTIAL CUT HOLES AT | | DR PART NUMBERS ENDING
ART NUMBERS ENDING WIT
JB END WITH "W" | | |----------------------|---|---|---------------| | PART# | STUB | В | С | | MC7200IEPP06T | 6" (150 mm) | 42.54" (1081 mm) | | | MC7200IEPP06B | 6 (150 11111) | | 0.86" (22 mm) | | MC7200IEPP08T | 8" (200 mm)
- 10" (250 mm)
- 12" (300 mm) | 40.50" (1029 mm) | | | MC7200IEPP08B | | | 1.01" (26 mm) | | MC7200IEPP10T | 10" (250 mm) | 38.37" (975 mm) | | | MC7200IEPP10B | | | 1.33" (34 mm) | | MC7200IEPP12T | 12" (300 mm) | 35.69" (907 mm) | | | MC7200IEPP12B | | | 1.55" (39 mm) | | MC7200IEPP15T | 15" (375 mm) | 32.72" (831 mm) | | | MC7200IEPP15B | | | 1.70" (43 mm) | | MC7200IEPP18T | | 29.36" (746 mm) | | | MC7200IEPP18TW | 18" (450 mm) | | | | MC7200IEPP18B | 10 (430 11111) | | 1.97" (50 mm) | | MC7200IEPP18BW | | | | | MC7200IEPP24T | - 24" (600 mm) | 23.05" (585 mm) | | | MC7200IEPP24TW | | | | | MC7200IEPP24B | | | 2.26" (57 mm) | | MC7200IEPP24BW | | | | | MC7200IEPP30BW | 30" (750 mm) | | 2.95" (75 mm) | | MC7200IEPP36BW | 36" (900 mm) | - | 3.25" (83 mm) | | MC7200IEPP42BW | 42" (1050 mm) | | 3.55" (90 mm) | CUSTOM PREFABRICATED INVERTS ARE AVAILABLE UPON REQUEST. INVENTORIED MANIFOLDS INCLUDE 12-24" (300-600 mm) SIZE ON SIZE AND 15-48" (375-1200 mm) ECCENTRIC MANIFOLDS. CUSTOM INVERT LOCATIONS ON THE MC-7200 END CAP CUT IN THE FIELD ARE NOT RECOMMENDED FOR PIPE SIZES GREATER THAN 10" (250 mm). THE INVERT LOCATION IN COLUMN 'B' ARE THE HIGHEST POSSIBLE FOR THE PIPE SIZE. 38.0" (965 mm) CT R 0 NOTE: ALL DIMENSIONS ARE NOMINAL # MC-SERIES END CAP INSERTION DETAIL MC-7200 TECHNICAL SPECIFICATIONS | MATERIAL LOCATION | | DESCRIPTION | AASHTO MATERIAL CLASSIFICATIONS | COMPACTION / DENSITY REQUIREMENT | |-------------------|---|--|---|---| | D | FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER | ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS. | N/A | PREPARE PER SITE DESIGN ENGINEER'S PLANS. PAVED INSTALLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS. | | С | INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER. | GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35%
FINES OR PROCESSED AGGREGATE.
MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF
THIS LAYER. | AASHTO M145¹ A-1, A-2-4, A-3 OR AASHTO M43¹ 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10 | BEGIN COMPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER THE CHAMBERS IS REACHED. COMPACT ADDITIONAL LAYERS IN 12" (300 mm) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR WELL GRADED MATERIAL AND 95% RELATIVE DENSITY FOR PROCESSED AGGREGATE MATERIALS. | | В | EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE. | CLEAN, CRUSHED, ANGULAR STONE OR RECYCLED CONCRETE ⁵ | AASHTO M43 ¹
3, 357, 4, 467, 5, 56, 57 | NO COMPACTION REQUIRED | | А | FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER. | CLEAN, CRUSHED, ANGULAR STONE OR RECYCLED CONCRETE ⁵ | AASHTO M43¹
3, 357, 4, 467, 5, 56, 57 | PLATE COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE. ^{2,3} | THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE". STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGNS, CONTACT STORMTECH FOR . ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION 5. WHERE RECYCLED CONCRETE AGGREGATE IS USED IN LAYERS 'A' OR 'B' THE MATERIAL SHOULD ALSO MEET THE ACCEPTABILITY CRITERIA OUTLINED IN TECHNICAL NOTE 6.20 "RECYCLED CONCRETE STRUCTURAL BACKFILL" ADS GEOSYNTHETICS 601T NON-WOVEN GEOTEXTILE ALL AROUND PAVEMENT LAYER (DESIGNED CLEAN, CRUSHED, ANGULAR STONE IN A & B LAYERS -BY SITE DESIGN ENGINEER) *TO BOTTOM OF FLEXIBLE PAVEMENT, FOR UNPAVED INSTALLATIONS WHERE RUTTING FROM VEHICLES MAY OCCUP INCREASE COVER TO 30" (750 mm). PERIMETER STONE (600 mm) MIN* (SEE NOTE 4) 12" (300 mm) MIN **THIS CROSS SECTION DETAIL REPRESENTS **EXCAVATION WALL** MINIMUM REQUIREMENTS FOR INSTALLATION. (CAN BE SLOPED OR VERTICAL) (1524 mm) PLEASE SEE THE LAYOUT SHEET(S) FOR PROJECT SPECIFIC REQUIREMENTS. MIN SEPARATION - 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 60x101 - 2. MC-7200 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION - FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS. REFERENCE STORMTECH DESIGN MANUAL FOR BEARING CAPACITY GUIDANCE. 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS. - REQUIREMENTS FOR HANDLING AND INSTALLATION 12" (300 mm) MIN - - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS. • TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3" - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 500 LBS/FT/%. SUBGRADE SOILS (SEE NOTE 3) AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73° F / 23° C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS. SHEET MC-7200 CROSS SECTION DETAIL END CAP 4" PVC INSPECTION PORT DETAIL (MC SERIES CHAMBER) 9" (230 mm) MIN (SEE NOTE 3) - 100" (2540 mm) — 🕒 🔫 12" (300 mm) MIN